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ON SLENDER-BODY THEORY AT TRANSO~C SPEEDS ‘ “

By KmrH C. HAXDDIZand E. B. KLUNKER

SUMMARY

The bam”cidew of the 8i%nd+?r-bodyapproximation have betm
applied to the &iWar tranwnic-- equu$ionfor the velmiiy
pOi!t?ntidin Orderto obtain 8ome oj the 888eniid feaiwrtx of
sv?imxier-bodytkory & tranmnk speeh. The remdl.s of the
invetiigaiion are presentid jiom a un@w? point of tiw
which O?MWMtT@!.88the8i?Tli.k&yof dender-body 801Ui20?18in
tlw IIurioux Mach number mnges. The primary di$erence
between the remdi%in the difereni jihw regimes h represent
~ a certuinfunction which h dependent upon the body area
distribution and the stream Mach numbw. The tranmnic
area rule and 8ome eom.iitti concerning ?%?Va.Jidi.tyfollow
from the ana.ly8i8.

.

INTRODUCTION

, Slender-body theory originated with Munk’s report (ref. 1)
in 1924 in which the forces on slender airships were calculated
for low-speed flight. In 1938 Tsien (ref. 2) pointed out that
Munk’s airship theory also applied to the flow past inclined
pointed bodies at supersonic speeds. The subject gained
new importance in 1946 with the appearance of Jones’s re-
port (ref. 3) in which it was shown that the basic ideaz of the
slender-body approximation cmdd be used to calculate the
forces on slender lifting wings at both subsonic and super-
sonic speeds provided that proper account was taken of
trailing-vortex sheets. Sinw Jones’s report, the subject has
received wide treatment. h an important paper in 1949,
Ward (ref. 4) developed a general unifying theory for the
flow past smooth slender pointed bodies at supemonic speeds.
This theory contains as special cases the lifting planar wings
of Jones rmd the slender nonlifting bodies treated by Von
Efmnfin (ref. 5). The corresponding problem at subsonic
speeds haa been examined by Adams and Sears (ref. 6) who
nlso extended the slender-body concepts to shapes which are
“not so slender.” Lighthill (ref. 7) has given a method for
calculating the flow past bodies with &continuities in slope.
Kmne (ref. 8) has developed solutions for slender wings with
thickmss, and various lifting configurations have been
treated by Herudet, Spreiter, Lomax, Ribner, and others
(rds. 9 to 13).

The slender-body theory presented in references 2 to 13
has been based upon the linearized equation for the velocity
potential. In the present report, the basic idem of the slen-
der-body approximation are applied to the nonliuear tran-
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sonic equation for the velocity potential in order to gain
some insight into the essential features of slender-body theory
at transonic speeds. The attempt has been made to present
the results from a unified point of view which demonstrates
the simikity of the slender-body solutions in the various
Mach number ranges.

The authors wish to acknowledge the valuable suggestions
of Dr. Adolf Busemann of the Langley Laboratory during
the prepmation of this report,.

SLENDER-BODY APPROXIMATION

Slender-body theory deals with that class of shapw whose
length is large compared with any lateral dimension. For
such shapes at both subsonic and supersonic speeds, the flow
in planes normal to the stream direction can be approximated
by solutions of Laplace’s equation. The justification is thot
for very slender wings or bodies the variation of the geometri-
cal properties in the stream direction is small and, conse-
quently, the rate of change of the longitudinal component of
the velocity in the stream direction is also small. The
various slender-body solutions have all been developed on
the basis of the linearized potential equation. However, a
similar development can be made on the basis of th nonlinear
transonic equation.

The simplest diilerential equation for the disturbance
potential @ which is generally valid at transonic sptieds
(ref. 14, for example) is

[[1–il’P– (’y+ l)M@=]@=+@m+@,;=o (1)

w~re z, y, and z are rectangular coordinates, lMis the stream
Mach number, and Y is the ratio of specific heats at constant
pressure and constant volume. With 1 the characteristic
length and b the characteristic width (such as the largest
lateral dimension of the configuration), the nondimensional
coordinates zI, yl, and Z1 defined by z=Lz1, Y=bYI, ud
z=bzl and the nondimensional potential @l defined by

q=: @l (z,, y,, z,) are all of the order of 1 in the vicinity

of the eotiguration. In this coordinate system, equation
(1) beoomea
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For sufficiently small values of the width pmameter b/1, the
terms involving derivatives in the stream direction can be
neglected to obtain the result that the flow approximately
satisfies Laplace’s equation

in the crossflow plane. Equation (3) represents the slender-
body approximation to equation (I).

The surface boundary condition is

where n is the outward normal to the configuration in the
crossflow plane. For slender configurations the surface
boundary condition can be integrated (ref. 4, for mample)
to give

J,~dv=S’(x) (4)

where v is any contour enclosing the shape, S(x) is the cross-
sectional area distribution of the shape, and the prime de-
notes diikrentiation with respect to the indicated argument.

In the slender-body approximation, the potential satisfying
equation (1) and the surface boundary condition is repre-
sented in the neighborhood of the configuration as a solution
of equation (3) plus a function of integration G(z). Thus

for r=?w<p, say, where p>b,

where @ is a solution of the Laplace equation in the crcwsflow
plane with z appearing as a parameter introduced by the
shape of the cross section at z. The function ~, being in-
dependent of the stream lMach number, can be evaluated
for an incompressible flow past the shape under considera-
tion. The function (7(z) is determined from considerations
involving the complete equation for transonic flow (eq. (l))
and, consequently, is dependent upon the stream lMach
number and upon the shape of the contignration. Although
the analytic expression for G(z) at transonic speeds is not
known, it will be shown that the only geometrical property
of the configuration which infiuencea this function is the
cross-sectional area distribution-just as at subsonic and
supemonic speeds. This property of (3(z) is established
by comparing the slender-body solution with the solution
for tie flow past a body of revolution. As a preliminary to
these considerations it is necessary to examine the expression
for the velocity potential in more detail.

The flow past a slender configuration is given by the solu-
tion of equation (3) satisfying the boundary conditions of the
problem and can be expressed in nondimensional terms by

~ ‘(’,’2)=:[’0+$)+’6)1.
b

where u is the contour bonnding the cross-sectional
area of the configuration and/or the trailing-vortex
system in the y,z-plane, m is the unit outward normal,

and r= J#+z~ as showp in the following sketch:
.<

z,f

Since r is independent of the surface normal, equotion (G)
can be written as

Hha—— —
. h ‘am ) ()1

log: da+(l ; (r= P) (7)

where use has been made of equation (4) and where S’ (x)

()
=p$ ; . The variation of @ with the azimuth rmglo o

is contained entirely in the line integral. Two of the basic
assumptions used in the derivation of equation (7) are that
both the perturbation velocities and the perturbation-
velocity gradients in the stream direction are small. In ordm

to satisfy these assumptions s”
(f) and “’’(?) ‘Wt b“

bounded. These conditions imply that equation (7) applies
only to shapes that are smooth and free from discontinuities.
Moreover, an additional restriction on the asymmetry of
the shape is sometimes required (ref. 4); namely, the radius
of curvature of the configuration in the crossflow plane must
be of the order of b where the shape is convex outward,

For a body of revolution at zero incidence the contour
integral in equation (7) vanishes and

where the subscript o is used to denote values for a body of
revolution. Since a body of revolution is completely deiined
in terms of the cross-sectional area distribution, this is the
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()only geometric parameter which enters into go ~ . Thus,

()
90 ;

()

x
is of the form gO ~ SO where the dependence upon

the body shape is contained in SO. Further consideration of
tlm region of validi~ of the slender-body solution is necessary

()
in order to show the corresponding dependence for g ~ .

Examination of equation (7) shows that the variation of
the potential with the rmimuth angle becomes vanishingly
small for r> T1, since the logarithm in the contour integral

is of the order b/rfor ~<<1. The magnitude of the terms

neglected in equation (1) are now compared with those
retained, in order to show that rl lies within the region where
the slender-body solution is a valid appro.simation. The
ratio of the neglected terms [1—M— (y+ l)LP@z]@= to any
of the remaining terms for T>rl isof the order

(f)(l){’1-M’[40gf)+0(1)l+

where O( ) denotes order of, O(1) denotes nonsingular terms,

and the functions g
‘(?) and g“(f)

are considered to be

regular. From this ratio it can be seen that, for a given
Mach number and degree of approximation c, the region of
validity of the slender-body solution (rs P), measured in
terms of body widths p/b,can be made as large as desired by

suit ably restricting b/L Comequently, for&l, rl<p and

the flow field external to n are nearly axisymmetric so that

‘(’,~’’=?[8’(f)10gf+ti)l ‘r’<r<p)‘g)
In addition, for a given degree of approximation, larger
values of the width parameter bll are permitted at transonic
speeds than in the other speed ranges since the quantity
1—3P is much larger at subsonic and supersonic speeds
than at transonic speeds.

In the region r>rl, the flow about a slender configuration
is mmrly axisymmetric and @ must be identical to some @O
in this region. If @o is the potential of the associated axisym-
mdric flow which gives rise to the same velocities as @ for
r>rl, then, from equations (8) and (9), ~o=s and go=g.
Thus, g is determined as the function go. Since the only
goometrhd property affecting g. is 80,and since 8=80, the

only geometrical property influencing g is 8.
()

Thus, g ;

()
is of the form g ~;g where the dependence upon the shape

()
of the configuration is contained entirely within 8 ~ .

In the preceding discussion the region of validity of the
slender-body oppro.simation to @. was tacitly assumed to

4091O+D*5O

be at lewt as large as that for ~. This condition is certainly
true since the singular tm in the two solutions are the
same.

A complete discussion of the validity of the slender-body
approximation at transonic speeds would require the analytic

()
exprsion for g ~ “ In the absence of this information,

such considerations are admittedly somewhat speculative.
Even so, it is of interest to explore the nature of the appro.xi,
mation since some elementary considerations suggest that -
the slender-body solution will provide a reasonable approxi-
mation in regions where it might be expected to be poor-
in the neighborhood of weak shock waves. Because of the

nature of the slender-body solution, the flow is represented
only in a small neighborhood of the configuration, and the
shocks are represented as surfaces of discontinuity normal
to the stream direction. Moreover, for slender con@gura-
tions at transonic speeds, only near normal shock waves
are to be expected.

In the slender-body approximation the term [l–fi@–
(Y+l)il@@t]@~ is required to be small compared with any
of the other terms in the transonic differential equation for all
values of r less than p. If this condition is to be satisfied
in the neighborhood of weak shock waves, the quantities

9’(i)[,x 1l–M’–(Y+l)M@% (lOa)

and

(l”b)

must be bounded there. Since the disturbance velocities
are bounded for shapes which satisti the assumptions of
slender-body theory, the quantities in expressions (10) will

()
be bounded at shock waves if g“ ~ is bounded. The

transonic differential equation admits of solutions having
velocity &continuities which are compatible with the
transonic approximation to the shock-wave relations (see
appendix). Since the development in -the appendix does
not require that 4= be singular, it seems reasonable to

()
suppose that d= and, hence, d’ ~ are bounded in the

vicinity of shock waves. In addition, the coefficient of

g“(~) in e~r~ion (l”a) hm a m~n v~ue of O for me

admissible normal shock waves and the contour integral
in expression (lOb) vanishes at values of x/1 for which the
configuration is axis~etic.

The slender-body solutions in the various Mach number
ranges are similar in that they are all represented by equation

(7) although the function
()

~ diflers for the various Mach

number ranges. Ward (ref. 4) has determined the func-

tion
()

~ for supemonic flows and Adams and Sears (ref. 6)
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h,ave obtained a corresponding expression for subsonic flows.
Although an analytic expression for this function at transonic
speeds is not known, it has been established that the only

geometrio property of the body influencing
() ?

is the area

distribution. Moreover, the transonic similarity rule for

bodies of revolution (ref. 1.4 or 15) shows that
() ;

can be

exqmssed in the form

where the similarity parameter is

AERODYNAMIC FORCES

Since the slender-body solutions are all represented by
equation (7), formal expressions for the aerodynamic forces
can be determined which are valid throughout the Mach
nymber range. Consequently, many of the essential features
of slender-body theory at tmmsonic speeds can be obtained
without resorting to detailed calculations.

LIFr

The most significant difference between the slender-body
solutions at subsonic, transonic, and supersonic speeds is

()that the function g ~ dMers in these various speed ranges.

‘ However, the term in the pressure arising from the function

()
9; makes only a uniform contribution to the pressure at

any value of x and, therefore, cannot ailect the lift distri-
bution or the lift. Thus, within the slender-body approxi-
mation, the lift distribution depends only upon the function
P and, consequently, is independent of the ptredm Mach
number. Several investigators (for example, Heaslet, Lo-
m~~, and Spreiter (ref. 9)) have previously noted that the
linearized slender-body theory gave consistent results, even
at a Mach number of 1, for planar systems.

According to slender-body theory, the lift distribution can
be obtained completely from solutions of bplace’s equation
in the cressflow plane. Since this equation is linear, the lift
is proportional to the angle of attack even at transonic
speeds. Ward has obtained an especially simple form for
the drag due to lift in which

where a is the angle of attack measured from zero lift and
L is the lift.

DRAG

By computing the momentum chsmge of the fluid passing

1

through a cylinder enclosing t~e body, the drag D is cletor-
mined as

where the body extends from ~=0 to $=1, / denotes tlm
contour of the body at the stern which in the caso of wings
or wing-body combinations includes the trailing-vortox
sheet; q is the stream dynamic pressure, nnd DOis the bam
drag. Equation (11) is valid throughout the Mach number

()
range provided the appropriate forms of the function g ~

are employed. The line integral is zero for nonlifting con-
figurations if the body is closed or if the body ends in Q
cylindrical section whose elements are parallel to tho strmm.
The eilect of Mach number (excluding the variation of base
drag with Mach number) is contained in the term involving

o9;”

()When the subsonic form of g ~ is used in equation (11),

the correct result is obbined that the drag of nonlifting con-

iigu.ratiom is zero.
()

By using the supersonic form of g ~ ,

the drag vmies with Mach number as [s’(1)]’ log (M’- 1).
For pointed bodies, or for bodies which end in a cylindrical
section, the supersonic slender-body tieory indicates that
the drag is independent of Mach number. For bodies which
do not satisfy these conditions, the supersonic result indicates
that the drag approached iniinity as the Mach number
approaches 1. These results from linear theory cannot bo
considered satisfactory at transonic speeds since they give n
discontinuity in the drag as the Mach number is ticreasecl
through 1; whereas experimental data show that the drag
starts to increwe rapidly at a subsonic Mach number and
varies smoothly through 1. However, tho few known
solutiom’ of the nordinem transonic-flow equation am in
good agreement with experiment in this regard. It would
be expected, therefore, that the drag rise of slondor shapes
would be correctly approximated by equation (11) onto tho

()
txausonic form of g ~ is known.

TRANSONIC AREA RULR

()The body shape enters into the function g ~ only as a

function of the cross-sectionaI area distribution throughout
the Mach number range. This property of the slendor-
body solutions leads to an important result even though

othe analytic expression for g ~ is not known at transonic

speeds. Examination of equation (11) shows that the body
cross-sectiomd shape enters into the slender-body drag
expression only through the contour @tegral evaluated at
the stern of the” coniigimation. For a fixed base contour,
then, the drag of nonlifting configurations depends only on
the axial distribution of the body cross-sectional arm and is
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independent of the cross-sectional shape. Thus, within the
shmdm-body nppro.xirrmtion, the drag of a nonlifting con-
figuration is the same as that of the associated body of
revolution hawing the same streamwise distribution of cross-
sectional area provided the base contour k fixed. It is in
this sense that an equivalent body of revolution is associated
with a wing-body combination. This result, often referred
to as the area rule, is especially significant at transonic
speds where larger values of the width parameter bj? are
pmmittcd than in other speed ranges.

Tlm property of the dependence of the drag upon the
clietribution of cross-sectional area has previously been
ob taincd by Ward (ref. 4) and Graham (ref. 16) for super-

sonic flow and has been observed experimentally by Whit-
comb (ref. 17, for example) at transonic speeds. The im-
portance of this result was &at noted by Wbitcomb who,
demonstrated that the area rule could be used as a basis for
the design of low-drag wing-body combinations at transonic
speeds. From the preceding development, the transonic
area rule is subject to the restrictions of slender-body theory
with the additional condition that the base contour be fked.

LANGLEY AERONAUTICAL LABORATORY,

NATIONAL ADVISORY Coaimm FOR AERONAUTICS,

LANGLEY I?IELD,VA., JanuaW 18, 1964.

APPENDIX

ON SOLUTIONS OF THE TRANSONIC DIFFERENTIAL EQUATION HAVING VELOCITY DISCOWHNDTD3S

The tnmeonic differential equation for the disturbance
velocity potential (eq. (l)) can be written as

From the conservation laws, the tangential velocities across
a shock wave are continuous and the normal velocity is
discontinuous. Consider tit the possibility that @= is
discontinuous across a surface normal to the z-coordinate.
In order for the differential equation to admit such solutions,
the v-dues of @. on ench side of the discontinuity must give
rise to the same value for the first term in equation (Al).
With the subscripts 1 and 2 denoting quantities immediately
upstream and downstream, respectively, of the surface of
discontinuity, this condition is satisfied by

[l–w– (7+l)il!f%,=]=– [1–il!P– (T+l).M-%P2=]

or

~_J12_(7+l)M’
‘2 (%=-–+2=)=0

which is the iirst-order approximation to the normal-shock
relations.

By considering discontinuities in all three velocity com-
ponents (i. e., oblique shock waves), the resulting expression
relating the disturbance velocities on each side of the dis-
continuity is identical to the iirst-ordar approximation for
the entire shock polar. Thus, the transonic d.inferential
equation admits of solutions having veloci~ &continuities
which “are consistent with the first-order approximation to
the entire shock polar. S&ted another way, the transonic
approximation to the differential equation and shock rela-
tions are consistent.
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